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In diesem Bericht stelle ich die während meines Forschungsfreisemesters im Sommer 2020 

am Department of Chemical Engineering der University of California – Santa Barbara erzielten 

Ergebnisse vor. Im Rahmen dieser Arbeiten sollte die Anwendung der Methode der prädiktiven 

Regelung (MPC – Model Predictive Control) auf die Regelung einer Drohne untersucht wer-

den. Insbesondere wurde das Ziel verfolgt, entsprechende Versuche für das regelungstechni-

sche Praktikum zu entwickeln. 

Die Regelung einer Drohne ist ein sehr attraktives Anwendungsbeispiel für ein Praktikum, da 

die Drohne im Vergleich zu den im chemical Engineering üblichen Beispielen, wie Füllstands- 

und Temperaturregelungen, ein schnelles dynamisches Verhalten zeigt und da man die Aus-

wirkungen der Regelung auf die Bewegungen der Drohne direkt sehen kann. Für das Prakti-

kum steht die Drohne crazyflie 2.1 zur Verfügung [1]. 

Für die Regelung soll das Programmpaket mpctools verwendet werden, das an der University 

of Wisconsin – Madison entwickelt wurde [2]. Es stellt einerseits eine Toolbox (Erweiterung) 

für Matlab dar, sodass die bekannte Bedienoberfläche und Funktionalität von Matlab zur Ver-

fügung stehen, und andererseits ein API (Application Programming Interface) für das Optimie-

rungsprogramm casadi [3], das für die im Rahmen von MPC erforderlichen Optimierungen 

eingesetzt wird. 

Wegen der Einschränkungen infolge der Covid-19-Pandemie waren nur wenige experimen-

telle Untersuchungen möglich. Der Schwerpunkt der Arbeiten lag daher auf Simulationsunter-

suchungen. 

Zunächst wurde ein dynamisches Modell der Drohne erstellt und in eine Matlab-Funktion um-

gesetzt. Sodann wurde die Anwendung der bekannten Methode der quadratisch optimalen Re-

gelung (LQR – Linear Quadratic Regulator) untersucht. Da hierfür die Kenntnis aller Zu-

standsgrößen erforderlich ist, wurden in einem nächsten Schritt verschiedene Methoden der 

Zustandsschätzung erprobt. Schließlich wurde eine Trajektorienplanung für die Drohne mit 

MPC entwickelt; in diesem Zusammenhang wurde auch ein Vorschlag für eine zeitoptimale 

Trajektorienplanung ausgearbeitet. Außerdem wurden einfache experimentelle Untersuchun-

gen zum Messrauschen der Sensoren der Drohne durchgeführt. 

Die Trajektorienplanung erfolgt so, dass mittels mpctools in Matlab eine gewünschte Trajekto-

rie als Folge von Sollwerten berechnet wird; hierbei werden alle Anforderungen an die 
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Trajektorie, wie z.B. das Umgehen von Hindernissen und die Einhaltung von Stellgrößenbe-

grenzungen, berücksichtigt. Die Sollwertfolge wird in einer Datei abgelegt und vom sog. Com-

mander, einem Programm zur Übermittlung von Befehlen an die Drohne, eingelesen. Der 

Commander sendet dann die berechneten Sollwerte in Echtzeit an die Drohne, die über eine 

Onboard-Regelung verfügt. 

Diese Methode konnte erfolgreich im Labor erprobt werden. Damit steht eine gute Möglichkeit 

zur Verfügung, MPC für die Regelung der Drohne im Praktikum anzuwenden. 

 

Die Ergebnisse der o.g. Schritte wurden jeweils in kurzen Statusberichten oder Präsentationen 

zusammengefasst. Diese Präsentationen und Statusberichte sind im Folgenden angefügt und 

stellen den Hauptteil dieses Gesamtberichts dar: 

• Präsentation: Model of the Drone crazyflie 2.1 

• Status Report 1: State Feedback 

• Status Report 2: State Estimation 

• Status Report 3: Structure of LQR Feedback Matrix, Constraints, and Madgwick Filter 

Continued 

• Note: First Experimental Results 

• Präsentation: Path Planning for the Drone crazyflie 2.1 
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Some simulations of the drone with simple controllers have been carried out. The model of the 

drone described in the presentation1 “Model of the Drone” is used; it will simply be called 

“presentation” in the sequel. So, the state variables are: 

• The positions (position vector rI ) w.r.t. inertial coord. system. 

• The velocities (velocity vector 𝒗𝐼 = 𝒓̇𝐼) w.r.t. inertial coord. system. 

• The attitude angles (vector Φ ). 

• The angular velocities (vector ω ) w.r.t. body coord. system. 

Each of these vectors has three components; the order of the drone model is therefore 12. 

The following four control variables (inputs) are used: 

• The thrust or total force of the rotors F . 

• The torques (vector TB) w.r.t. body coord. system. 

Approximate values for the parameters of the drone are used, based on the literature [1]. [2]. 

Small drag force coefficients are selected arbitrarily (“linear damping”). 

For testing of simple controllers, a moderate test maneuver is used: The trajectory of the drone 

should describe a semicircle with a radius of 1 m over the x-y-plane; the drone should run 

through this semicircle within 4 s and then stop. It should follow this path in forward direction, 

i.e. it has to yaw by 180°. In addition, its altitude should be increased by 2 m within the first 2 s. 

The total simulation time is 5 s. No careful tuning of the controllers is done yet; the goal of the 

simulations is to test the model of the drone and to check, whether simple controllers work at 

all. 

 

A Simulink model of the drone with simple controllers is set up. This model is shown on the last 

pages of the presentation. PD-controllers for the positions and the angles in a partial cascade 

structure are used. The controllers for the x- and y-positions determine reference values for the 

pitch and roll angle. A transformation (rotation) is used, to assign the command variables of the 

                                                           
1 The model was presented in the Rawlings group at May 19, 2020 
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position controllers to the angles. This transformation depends on the reference value of the 

yaw angle. The z-position controller determines the force F and the attitude (angle) controllers 

determine the torques TB. 

The presentation also shows a simulation result. Obviously, the simple controllers work well 

with the model of the drone, but are not quite realistic; they use the velocities of the drone, 

which are not measured, and work in continuous time, for example. 

 

The model of the drone is implemented in Matlab using MPCtools. A time step of 0.01 s is used 

in all Matlab simulations. A LQR based on the linearized model (c.f. CSTR example in MPCtools) 

without state estimation is used for control. The linearization is done for x = 0 (crazyflie_1.m)2.  

This simple controller only works for small yaw angles (|𝜓| < 30°, approximately). Therefore, 

the test maneuver cannot be performed. It can only be performed in a simplified way, in which 

the drone doesn’t yaw, i.e. it doesn’t rotate around its vertical axis. So, it doesn’t follow the tra-

jectory in its forward direction. 

Gain scheduling is used, so that the controller also works for larger yaw angles. Three versions 

of gain scheduling are tested: 

1. Linearization and LQR design are performed at each time step (c.f. gainscheduling ex-

ample in MPCtools) based on the desired values of the positions and the yaw angle; 

the yaw angle is most important. All other state variables are set to zero for linearization 

(crazyflie_2.m). This gain scheduling leads to high computational load of the control 

computer, see table below. Therefore, other versions are tested. 

2. Linearization and LQR design are performed in advance, before the simulation of the 

control system, for sampling values of the yaw angle in the range  

−𝜋 ≤ 𝜓 ≤ 𝜋 with an increment of π/10, and the feedback matrices are stored. During 

the simulation the feedback matrix is determined in each time step by linear interpola-

tion based on the stored matrices in dependence of the desired yaw angle. 

This also requires some computational load for the control computer and also some 

storage requirements for the feedback matrices. These requirements could be 

                                                           
2 The m-files with the corresponding simulation models are mentioned in parenthesis. 
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reduced, if only the matrix elements, which change considerably with the yaw angle, 

are interpolated. In addition, some matrix elements are very small (zero?). 

Question: Is something known about the structure of LQR feedback matrices, i.e. which 

of their elements are zero? 

3. Feedback matrices are calculated in advance in the same way as in version 2, but the 

interpolation is omitted. The feedback matrix for the sampling value, which is closest to 

the current desired yaw angle is used (crazyflie_4.m); therefore, the feedback matrix is 

switched. 

The storage requirements of this version can also be reduced as described for               

version 2. 

All of these gain scheduling controllers work well for the test maneuver. With version 2, there 

are very small peaks in the control variables, if the sampling interval of the yaw angle changes. 

With version 3, there are considerable peaks, when the feedback matrix is switched. These 

peaks in the control variables lead to small changes or some “restlessness” of the attitude an-

gles. These effects could be reduced by using a smaller yaw angle increment for the LQR de-

signs. 

The following table shows the run times of the control system. It gives an impression of the 

computational loads required for the different versions. The versions described in the next sec-

tion are included. 

Model, controller Total run time [s] 
Time for  

linearizarion [s] 

Time for LQR 

calculation [s] 

crazyflie_1 0.92 0.10 0.22 

crazyflie_2 8.50 3.22 4.47 

crazyflie_3 1.54 0.25 0.45 

crazyflie_4 1.42 0.24 0.42 

crazyflie_10 w/o in-

ertial quantities 
0.91 0.10 0.22 

crazyflie_10 w/  

inertial quantities 
0.99 0.12 0.25 

crazyflie_11 0.92 0.10 0.22 
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Only crazyflie_2 requires considerably more time than the other versions. This is due to the 

linearization and LQR calculation in every time step. The difference between crazyflie_3 and 

crazyflie_4 is the interpolation; it seems that this doesn’t require much computational effort. 

(The times for linearization and LQR calculation for these two versions should be equal. Reason 

for the small differences?) 

 

The gain scheduling is necessary, because the applied toques, i.e. the control variables, and the 

controlled states, i.e. the positions, are not quite consistent in the model of the drone: The tor-

ques are defined w.r.t. the axes of the drone (body coord. system) whereas the positions are 

described in the inertial system. This leads to the encountered problem with constant feedback, 

if the yaw angle becomes too large. 

To overcome this problem, the translational velocities and the positions are now defined w.r.t. 

the body coord. system. This requires only a small change in the model; the main difference to 

the first model is, that the centrifugal force must be taken into account (crazyflie_10). 

In this model, the velocities and positions w.r.t. the inertial system are also calculated for reasons 

of evaluation and comparison of the control system. 

With this modified model, a constant feedback matrix, calculated on basis of the linearized 

model for x = 0, is sufficient for execution of the test maneuver without lift. Of course, the ref-

erence trajectory must also be specified w.r.t. the body coord. system. This is easy for the test 

maneuver, but could be cumbersome for complex trajectories. If a trajectory described w.r.t. 

the inertial system is to be transformed to the body coord. system, the current attitude angles 

shouldn’t be used, because this would lead to additional feedback and could cause instability of 

the control system. So reasonable values for these angles must somehow be determined based 

on the required trajectory. 

The use of the modified model (and constant feedback) leads to a drawback: The drone loses 

height during the maneuver. The reason for this is quite obvious, as its longitudinal axis (x-axis) 

points slightly downward in order to generate a longitudinal driving force. In order to overcome 

this disadvantage, another modification of the model is made: The vertical position of the 

drone (z-position) is described w.r.t. the inertial system (crazyflie_11.m). This is an ad hoc so-

lution and should be tested in more detail. 
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Another disadvantage of the modifications is, that the drone seem to follow the desired trajec-

tory with less accuracy than with the gain scheduling control. The reasons for this might be, that 

the positions w.r.t the inertial system are not controlled and that these positions are calculated 

by simple Euler integration of the velocities. 

It could also be tried to change the inputs (torques) of the drone, so that they are more con-

sistent with the controlled positions. But this would make it difficult to formulate constraints for 

the inputs, which will be considered in further development. 

 

 

The next steps in this project could be: 

• Add state estimation. 

• Make the controllers really predictive. 

• Take constraints of the control variables and states into account. 

• Use nonlinear control. 

• Determine, which models are best suited for MPC. 

 

[4] https://www.bitcraze.io/products/crazyflie-2-1/, April 22, 2020. 

[5] Landry, B.: Planning and Control for Quadrotor Flight through Cluttered Environments. B.S. 

MIT, 2014. 

  

https://www.bitcraze.io/products/crazyflie-2-1/
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The focus of the investigations during the last weeks was state estimation. For these investiga-

tions, the model of the drone described in the presentation3 “Model of the Drone” is used; it 

will simply be called “presentation” in the sequel. All investigations are based on simulations. 

For testing, the same maneuver as in the first report is used: The trajectory of the drone should 

describe a semicircle with a radius of 1 m over the x-y-plane; the drone should run through this 

semicircle within 4 s and then stop. It should follow this path in forward direction, i.e. it has to 

yaw by 180°. In addition, its altitude should be increased by 2 m within the first 2 s. The total 

simulation time is 5 s. For feedback, the LQR with gain scheduling is used (crazyflie_2 in report 

1). Unless otherwise noted, the time step is ∆𝑡 = 0.01 s. 

The following state estimation schemes were implemented and tested: 

1. Linear steady state Kalman filter with “gain scheduling” (KF). 

2. Extended Kalman filter (EKF). 

3. Moving horizon estimation (MHE). 

4. Madgwick filter (MF). 

All estimators are tested in open loop at first, i.e. the state estimates are not used for feedback; 

ideal state feedback is used in this case. In a second step, the state estimates are used for feed-

back, i.e. the estimators operate in closed loop. 

In order to assess the impact of disturbances, normally distributed measurement noises with 

the following standard deviations are introduced in the simulation model: 

1. Position measurements: 𝑠𝑝 = 0.05 m; according to bitcraze4, the accuracy of the position-

ing system is about 10 cm. 

2. Measurement of angular velocities: 𝑠𝜔 = 0.0056 rad/s, according to the data sheet5 of the 

sensor BMI088. 

3. Acceleration measurements in x- and y-direction: 𝑠𝑎,𝑥𝑦 = 0.026 m/s2, 

acceleration measurement in z-direction: 𝑠𝑎,𝑧 = 0.029 m/s2, according to the data sheet 

of the BMI088. 

                                                           
3 The model was presented in the Rawlings group at May 19, 2020 

4 https://www.bitcraze.io/products/loco-positioning-system/ (6-11-20) 

5 https://www.bosch-sensortec.com/products/motion-sensors/imus/bmi088.html (6-11-20) 

https://www.bitcraze.io/products/loco-positioning-system/
https://www.bosch-sensortec.com/products/motion-sensors/imus/bmi088.html
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These are maximum values for the standard deviations: The inaccuracies of the position meas-

urements need not totally be due to noise; there could also be offsets or slowly changing parts. 

The standard deviations of the inertial measurements (BMI088) can be reduced by choosing a 

smaller bandwidth. 

In addition, normally distributed state noise with arbitrarily chosen standard deviation 𝑠𝑤 is in-

troduced. 

 

This filter is based on the same idea as the LQR described in report 1: The model of the drone 

is linearized at each time step for the current reference variables and a steady state KF is rede-

signed. The linearization is performed for steady state, i.e. the roll and pitch angles are 𝜑𝑠𝑠 =

𝜗𝑠𝑠 = 0, c.f. presentation p. 18. So in the linearizations, only different values of the yaw angle 

reference 𝜓𝑟𝑒𝑓 are used. 

This approach faces a serious problem: The linearized system is not observable (also not de-

tectable). The reason is, that the submatrix 𝑿1 in the linearized model is singular (rank 2), c.f. 

presentation p. 18. This submatrix couples the rotational into the translational subsystem; it is 

the Jacobian 

 𝑿1 = 𝜕𝑭𝐼/𝜕𝚽, 

where 𝑭𝐼 = 𝑹𝑭𝐵 is the force vector acting on the drone in the inertial coordinate system, and 

𝚽 is the attitude vector, c.f. presentation pp. 5, 9, and 11. 

This Jacobian has the null vector 

𝒏 = [
sin 𝜗

− cos 𝜗 tan 𝜑
1

]. 

In steady state, it is 𝒏 = [0 0 1]𝑇. Obviously, the yaw angle 𝜓 does not influence the trans-

lational subsystem, i.e. it is not reflected in the position measurements, and is therefore unob-

servable − according to the system description obtained by linearization in steady state. 

To overcome this problem, two approaches are tested: 

a) Calculate the yaw angle based on the measurements of the angular velocities, i.e. integrate 

𝜓̇, as given on p. 14 of the presentation. Simple Euler forward integration is used for this 

task. Then the calculated yaw angle is considered an additional measurement value. 
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b) Use the reference value 𝜓𝑟𝑒𝑓 as additional measurement value. If the feedback control 

works well, 𝜓𝑟𝑒𝑓 ≈ 𝜓. 

For the system noise standard deviation, 𝑠𝑤 = 0.01 is used. 

In open loop the KF gives reasonable results. It makes almost no difference, whether the inte-

grated or the reference value is used as additional measurement value for 𝜓. However the es-

timated vertical velocity 𝑟̂̇𝑧 has a considerable steady state offset; this should be due to the lin-

earization at 𝜑𝑠𝑠 = 𝜗𝑠𝑠 = 0  (steady state). 

If the KF is operated in closed loop, the control loop is stable. However; the closed loop behavior 

deteriorates considerably in comparison with the ideal case, where the states are fed back: The 

projection of the trajectory in the x-y-plane doesn’t look like a semicircle anymore, and the an-

gles and velocities flutter strongly. The closed loop behavior can be improved a little bit by re-

tuning the LQR. If the reference value 𝜓𝑟𝑒𝑓 is used as additional measurement value, the closed 

loop behavior is worse than with the integrated value. 

With standard deviation 𝑠𝑤 = 0.001, the behavior becomes much more quiet, but there occur 

large steady state errors in the vertical position of the drone. 

Larger time steps, e.g. ∆𝑡 = 0.05 s, are possible: the closed loop is still stable, but there also 

occur large steady state errors in the vertical position of the drone. 

 

In open loop, the EKF delivers good estimates with standard deviation 𝑠𝑤 = 0.01. However, 

using the estimates for feedback, also results in much poorer, but stable control behavior, not 

much better than with the KF. A standard deviation of  

𝑠𝑤 = 0.001 for the state noise results in a much better and smoother behavior without other 

disadvantages. 

It is possible to use larger time steps; e.g. ∆𝑡 = 0.05 s only results in a little rougher transients. 

It is also possible to neglect the acceleration measurements; this also deteriorates the control 

behavior only slightly. 

The reason for the large control errors is the measurement noise. When applying feedback of 

state estimates, it should be checked, whether the bandwidth of the inertial sensor can be re-

duced in order to reduce the measurement noise. It should also be investigated, whether a re-

tuning of the LQR leads to better results 
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When applying MHE6, there is the problem, that the system has a direct transmission from the 

control variable total force to the acceleration measurement – at least there is no straight for-

ward way to deal with such systems in mpctools. To solve this problem, a time lag for the build 

up of the force is introduced, which is quite realistic (𝑇1 = 0.025 s arbitrarily chosen). No lag is 

used for the torques (which is not realistic) to keep the system order low. 

For open loop estimation, it is difficult to find parameters, for which the nonlinear solver is suc-

cessful. The time step of ∆𝑡 = 0.01 s, which was usually used up to now, is too small; ∆𝑡 =

0.05 s should be used. The horizon must not be too small, it should be 20 or more. In addition, 

the weighting of the prior strongly influences the success of the solver. The estimates obtained 

with parameters, for which the solver works, are of limited quality. They are not better than with 

the EKF. 

Using the state estimates for feedback7, results in quite poor control behavior, not better as 

with the EKF. The reason for this is also the measurement noise. If no noise is injected in the 

simulation, the state estimates and the closed loop behavior are fine. 

Before thinking about using MHE for control of the real drone, more investigations should be 

made, if MHE could be taken into consideration for this task at all. 

 

According to bitcraze8, a MF [1] is used in the standard control software of the drone to esti-

mate the attitude based on the measurements of acceleration and angular velocity. It uses qua-

ternions to describe the attitude; this has the advantage that no trigonometric functions are 

necessary and so the computations are cheap. In order to compare the results of the MF with 

the true states, the quaternions are converted to Cardanian angles in the current investigations. 

The MF basically integrates the measured angular velocities by Euler forward integration. This 

corresponds to integrating the derivatives given on p. 14 of the presentation. The result is cor-

rected by using the acceleration measurements. The basic idea for this is, that the direction of 

                                                           
6 Nmheexample of the mpctools examples is used as a blue print. 

7 Many thanks to Koty McAllister for his help to get this running. 

8 https://www.bitcraze.io/documentation/repository/crazyflie-firmware/master/functional-areas/sen-

sor_to_control/ (04/20/2020) 

https://www.bitcraze.io/documentation/repository/crazyflie-firmware/master/functional-areas/sensor_to_control/
https://www.bitcraze.io/documentation/repository/crazyflie-firmware/master/functional-areas/sensor_to_control/
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the acceleration measurements in the inertial coordinate system is known: It is the vertical di-

rection – of course this is true only in steady state. So the correction is done in such a way that 

the direction of the measured acceleration aligns better with the known direction. For this an 

“optimization problem” is formulated, which actually is searching the solution of a set of nonlin-

ear equations9. A Newton step is used to improve the attitude estimation. Of course the MF is 

not a filter in the sense of a KF, as it doesn’t use a dynamic model of the system and as it is not 

possible to consider noise in any way. 

The integration of the angular velocity measurements works well – without measurement noise 

or errors. But it was not possible to get reasonable results, when the “correction” was put into 

operation, even after fixing some errors in [1]. This is quite strange, because a simple C-code 

is given in [1] (and also by bitcraze), which was transferred into a Matlab function. 

If the MF could be made working reasonably, it could be combined with a KF or EKF: The MF 

would estimate the attitude of the drone and the KF the position and velocity. This could prob-

ably reduce the computational effort compared to a full order KF / EKF. In [1] the extension of 

the MF by another KF is proposed to take account of measurement offsets of the angular ve-

locity sensors. 

 

Based on the simulation results it seems, that the EKF10 is well suited for state estimation. The 

MHE has some problems; there are also doubts, that the MHE can be calculated in real time. 

So it is questionable whether it is worthwhile trying to improve the MHE. 

When using the state estimates for feedback, the magnitudes of the measurement noises are 

very important. It should be tried to get realistic values for them, which are hopefully smaller 

than those used in the simulation, and to reduce them as far as possible, e.g. by reducing the 

bandwidths of the sensors. 

It should be possible to reduce the computational load of the KF / EKF by exploiting the struc-

ture of the linearized system, as the matrices of this system contain elements or blocks, which 

are always zero. Another question is, whether quaternions should be used to describe the atti-

tude of the drone. This would possibly reduce the computational load, because no 

                                                           
9 There are inaccuracies and errors in [1]. 

10 bitcraze also offers code of an EKF; this was not looked at in the current investigations. 
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trigonometric functions need to be used. But quaternions are much more abstract than Carda-

nian angles, which is a serious disadvantage, if the drone is to be used by students in the control 

lab. 
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In this report, some short results are summarized: 

1. The structure of the LQR feedback matrix. 

2. Consequences of constraints of the control variables. 

3. Additional results with the Madgwick filter. 

The investigations are based on the model of the drone described in the presentation11 “Model 

of the Drone”; it will simply be called “presentation” in the sequel. This model uses the state 

vector 

𝒙 = [𝑟𝑥 𝑟𝑦 𝑟𝑧 𝑟̇𝑥 𝑟̇𝑦 𝑟̇𝑧 𝜑 𝜗 𝜓 𝜔𝑥 𝜔𝑦 𝜔𝑧].𝑇 

The first three variables describe the position of the drone (w.r.t. inertial coordinate system), the 

next three variables are the corresponding velocities. Variables 7 – 9 are the roll, pitch and yaw 

angles, followed by the angular velocities (w.r.t. body coordinate system).  

For the calculation of the LQR considered in the following sections, the weighting matrices  

𝑸 = diag[103 103 103 0 0 0 100 100 100 1 1 1] 

𝑹 = 𝑰 

are used unless otherwise noted. 

 

In the first report, it is already mentioned, that many elements of the feedback matrix are small. 

This is looked at in more detail in this section. The control variables are 

𝒖 = [𝐹 𝑇𝑥 𝑇𝑦 𝑇𝑧]𝑇, 

where 𝐹 is the total thrust, and 𝑇𝑖 is the torque around the 𝑖-axis, 𝑖 ∈ {𝑥, 𝑦, 𝑧}. 

As the linearized model depends on the yaw angle, the feedback matrix also depends on 𝜓 – 

this is the reason for the gain scheduling. The feedback matrix has the following structure: 

                                                           
11 The model was presented in the Rawlings group at May 19, 2020 
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𝑲 = [

0 0 𝑋
𝑋 𝑋 0

0 0 𝑋
𝑋 𝑋 0

0 0 0
𝑋 𝑋 0

0 0 0
𝑋 𝑋 0

𝑋 𝑋 0
0 0 0

𝑋 𝑋 0
0 0 0

𝑋 𝑋 0
0 0 𝑋

𝑋 𝑋 0
0 0 𝑋

]. 

𝑋 denotes elements, which are not for all values of the yaw angle 𝜓 zero (not always zero)  

Computational details: When the feedback matrix is calculated by Matlab, the zero-elements 

are not exactly zero. But it can be seen, that there are two clearly distinguishable groups of 

elements: Large elements and small elements. E.g. for 𝜓 = 𝜋/4, the large elements are in the 

range 10−7 < |𝑘𝑖,𝑗| < 102 (actually, only |𝑘3,10| and |𝑘2,11| are of the order 10−7, the other 

large elements are at least of order 10−5), while for the small elements |𝑘𝑖,𝑗| < 10−13. This 

gives reason for the assumption that the small elements should be zero. 

The same is true for the elements of the solution 𝑷 of the steady state Riccati equation. There 

are also clearly distinguishable groups of large and small elements (the orders of magnitude 

are a little different than for 𝑲). If the small elements are set to zero, the modified 𝑷 still solves 

the Riccati equation with the same accuracy, i.e. the largest elements of the right hand side of 

the Riccati equation are of the same order of magnitude as for the unmodified solution (10−10). 

If the feedback matrix is calculated on the basis of the modified 𝑷-matrix, the above given zero 

elements are obtained exactly. 

This leads to some conclusions: 

• If the linearization is done for 𝜓 = 0, the elements 𝑘2,1, 𝑘3,2, 𝑘2,4, 𝑘3,5 , 𝑘3,10, and 𝑘2,11 are 

also zero. This shows, that the LQR does the same as the simple controller shown in the 

presentation: PD-control of the positions and the Cardanian angles – of course without 

cascade structure. It is possible to transfer the LQR to the PD-controller structure (and vice 

versa). 

• If the gain scheduling is done by interpolation or selection of the feedback gains as de-

scribed in the first report, only the elements marked 𝑋 must be interpolated or selected. 

This reduces the computing load considerably. 

• In the calculation of the control variables, only the 𝑋-gains must be considered. This leads 

to further reduction of the computing load. 

 



28 

 

A simulation study is performed to assess the consequences of the constrained manipulated 

variables and test some simple measures to alleviate theses consequences. In this study, the 

forces of the four rotors are used as control variables, so 

𝒖 = [𝐹1 𝐹2 𝐹3 𝐹4]𝑇 

The constraints are 0 ≤ 𝐹𝑖 ≤ 0.12 N, 𝑖 = 1, … , 4, according to [1]. 

For feedback, the LQR with gain scheduling is used (crazyflie_2 in the first report). The time 

step is ∆𝑡 = 0.01 s. No state estimation is used. It is also not tried to apply nonlinear control 

methods, which can take the constraints of the control variables into account explicitly. 

For testing, the maneuver described in the first report is slightly modified: The trajectory of the 

drone should still describe a semicircle with a radius of 1 m over the x-y-plane; the drone should 

run through this semicircle within 4 s and then stop. It should follow this path in forward direc-

tion, i.e. it has to yaw by 180°. But now its altitude should be increased with velocity 𝑣𝑧 during 

the first 2 s; actually 𝑣𝑧 is the rate of change of the setpoint of the vertical position. The total 

simulation time is 5 s.  

 

2.1 Simple Limitation of the Forces 

At first, forces, which exceed their boundary values, are simply set to the corresponding bound-

ary value, i.e. they are clipped. It turns out, that the control loop becomes unstable, if the vertical 

velocity 𝑣𝑧 is chosen too large. One reason of this problem is that the torques are severely 

changed by the force clipping; if all forces exceed their limits, no torques can be generated any 

more. This gives reason to trying to retune the LQR in order to attenuate the consequences of 

the limiting of the forces or to increase the stability limit w.r.t. 𝑣𝑧. 

The results of the trials are shown in the following table. In the first columns, the design param-

eters used, i.e. the weighting factors are given. The last column shows the largest velocity 

𝑣𝑧,max, for which the control loop is stable. This stability limit is determined with a resolution of 

0.05 m/s. If the value 𝑣𝑧,max is chosen, the overall control behavior is quite poor; the projection 

of the trajectory in the x-y-plane has only limited resemblance to a semicircle. The first row 

describes the standard parameter set as given above (printed in grey). 
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Weight of vert. 

position 
Weights of angles 

Weights of con-

trols 

Stability limit 

[m/s] 

𝑞3,3 𝑞7,7 = 𝑞8,8 𝑞9,9 𝑹 𝑣𝑧,max 

1000 100 100 𝑰 1.70 

100 100 100 𝑰 2.35 

1000 100 1000 𝑰 1.55 

1000 1000 1000 𝑰 1.50 

100 100 1000 𝑰 2.15 

100 1000 1000 𝑰 2.25 

1000 100 100 𝟏𝟎 ∙ 𝑰 2.40 

 

Obviously, reducing the weighting factor 𝑞3,3 of the vertical position increases the stability limit 

as the forces are limited not so often. It is remarkable that increasing the weights of the angles 

doesn’t help at all. The measures, which increase the stability limit, including increasing the 

weights on the forces, deteriorate the loop behavior, if the constraints of the forces are not ac-

tive, i.e. the behavior becomes slower and the control deviations increase. 

 

2.2 Limitation of the Forces by a Constant Fector 

This limitation reduces all forces by the same factor. If at least one force exceeds one of its 

boundaries, the factor is determined such that the largest (smallest) force just reaches its upper 

(lower) boundary. Then all forces are multiplied by this factor. With this method, the direction 

of the control vector 𝒖 is not changed. So, the ratios of the forces are not changed; it is still 

possible to exert torques, when forces are limited. 

The results obtained with this limiting by a constant factor are shown in the following table. For 

reasons of comparison, the results of the clipping are repeated. 

For all tested parameter sets, the results obtained with the limiting by a constant factor are su-

perior to those of the clipping. The stability limit is increased by 54 % in average. Increasing the 

weighting factors of the angles can also have a positive influence on the “stability region”, if the 

weights of all angles are changed. 
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Weight of 

vert. pos. 
Weights of angles 

Weights of 

controls 

Clipping: 

Stability 

limit [m/s] 

Limitation by 

factor: 

Stability limit 

[m/s] 

𝑞3,3 𝑞7,7 = 𝑞8,8 𝑞9,9 𝑹 𝑣𝑧,max 𝑣𝑧,max 

1000 100 100 𝑰 1.70 2.25 

100 100 100 𝑰 2.35 3.25 

1000 100 1000 𝑰 1.55 2.05 

1000 1000 1000 𝑰 1.50 3.05 

100 100 1000 𝑰 2.15 3.05 

100 1000 1000 𝑰 2.25 4.50 

1000 100 100 𝟏𝟎 ∙ 𝑰 2.40 3.25 

 

More parameter sets could be tested, of course. In particular, the weighting factors of the trans-

lational and rotational velocities might be increased, but this would be a tedious task. 

Another possibility to avoid stability problems would be an elaborate trajectory planning, which 

avoids frequent and severe limitations of the control variables. 

 

This filter [2] and some results obtained by it are already described in the second report. Here 

are some additional remarks: 

• The estimated values of the MF are not bad, if a small value is chosen for the coefficient 𝛽, 

which determines the degree of correction based on the acceleration measurements, e.g. 

𝛽 = 0.05. Nevertheless, the “correction” leads to estimation errors, if the drone is not in 

steady state, i.e. if an important assumption of the filter derivation is not fulfilled. But when 

steady state is reached, the estimates converge (slowly) towards the true values. 

• One could think about using the correction only in steady state – or in a state, which doesn’t 

cause errors – and switching it off otherwise. But then it would be necessary to identify 

steady state based on the measurements of the angular velocities and accelerations. 
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• If measurement and state noises are introduced12, the estimates deteriorate to some de-

gree, but not dramatically. The high frequency components of the noises are attenuated, as 

the filter basically integrates the measurements, but the low frequency components lead to 

some “floating” of the estimates. This might be reduced by adding a Kalman filter, which is 

proposed in [2] in order to avoid estimation errors due to bias of the gyroscopic measure-

ments. 

 

[6] PWM to Thrust: https://www.bitcraze.iomisc:investigations:thrust, April 16, 2020. 

[7] Madgwick, S.O.H: An efficient orientation filter for inertial and inertial/magnetic sensor ar-

rays. Report x-io and University of Bristol (UK) 25 (2010): 113-118. 

 

  

                                                           
12 The same noise standard deviations as described in the second report are used. 

https://www.bitcraze.io/
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Note on Drone Project: First Experimental Results 

On Aug.6, 2020 some measurements with the real drone crazylie 2.1 were taken in the under-

grad lab at UCSB. Some results of the stationary measurements are summarized in the sequel. 

During these measurements, the drone was sitting at a fixed position without any movement. 

So it should be possible to determine the standard deviations of the measurement noise out of 

the collected data. 

 

Standard Deviations of Measurement Noise 

The following results are based on the data files stationaryhigh and stationarylow, containing 

833 and 774 samples of every measured quantity, respectively. Unless otherwise noted, the 

standard deviations determined from the different measurements coincide. 

Acceleration measurements: The standard deviations are independent of the direction (axis) of 

the measurement: sa = 0.0011 m/s2. 

Angular velocity measurements: There are differences depending on the measurement axis:

 sω,x = 0.13 deg/s 

 sω,y = 0.18 deg/s 

 sω,z = 0.11 deg/s. 

These standard deviations are much smaller than those calculated from the specifications in 

the data sheet, which are sa,spec = 0.026 m/s2, sω,spec = 0.32 deg/s. The reason for the differ-

ences might be that the measured values are already filtered or that the bandwidths of the sen-

sors are reduced. 

For the position of the drone, only the results of the onboard Kalman Filter could be measured. 

If the drone is located well inside the cuboid defined by the nodes of the positioning system, the 

corresponding standard deviations are for all three directions approximately:  

spos,Kalman = 0.01 m. 

For the measurement “stationarylow”, the drone was placed on the floor, so that is was located 

under the lower nodes of the positioning system (z ≈ -0.1 m). Then the standard deviation is 

sz,Kalman,low = 0.016 m. So it can be recommended, that the drone should be operated within the 

cuboid of the nodes. 
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To get an idea of the standard deviations of the unfiltered position measurements, simulations 

of steady state behavior with an Extended Kalman Filter were run. In the simulations, the stand-

ard deviations of the position measurements were adjusted so that the results of the Kalman 

Filter coincid approximately with the measured spos,Kalman. The process noise was set to zero in 

the simulations. The result is that the standard deviation of the position measurements is 

spos ≈ 0.025 m. 

This result is a little uncertain, as the tuning of the onboard Kalman Filter is not known. However 

it is a quarter of the accuracy of the position measurements of 10 cm mentioned by bitcraze 

and therefore reasonable. 

 

The measurement noise standard deviations determined from the measurements are smaller 

than those used in the investigations described in report 2, which are based on data sheets. If 

the new values are used, the results of the Extended Kalman Filter are much better, and the 

state estimates can be used for feedback very well. 

 

During the lab session, the drone was weighted. Its mass is 33 g. This is more than the value 

used in the simulations performed (27 g). The difference should be caused by the receiver of 

the positioning system, which was not taken into account up to now. 
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