Representation Learning and Latent Spaces for Trajectory Prediction in
Automated Driving

Overview Results

= |dentifying novel approaches and representations for predicting vehicle = Evaluation of the proposed DVAE shows, that its prediction accuracy
trajectories that benefit from interpretability. is similar to their non-interpretable counterparts and superior to simple
= Focus: Long-term prediction periods (> 15). model-based methods like the Constant Velocity (CV) model.

t = 0s t = bs

= Problem: Long-term prediction highly depends on the scenario con-

text. To include context information into predictions, the applied Al
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algorithms/architectures unavoidably require to be complex to a certain
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extent and therefore are not interpretable. However, complex Al-based

architectures are hard to trust blindly for such high stake desicions.

= Solution: Find appropriate representations, structures and architectures
that enable partial interpretability by still providing good performance. « The training can be done completely unsupervised.

— Shaping (latent) representations in order to gain interpretability. = [he resulting latent space is interpretable, which allows prediction val-

idation by rules in the latent space ("Watch-Dog').

= Target trajectory

Predicted trajectory = Interpretability contributes towards the use of Al in safety critical ap-

=\ Distribution of Iat. position plications. Predictions can be evaluated regarding their validity. Physi-

cally impossible or unlikely predictions can be detected and declared as
untrustworthy.
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= Train an autoencoder using D to perform the mapping X +— z (en-
coder) and 2z — X rec (decoc er)_ Possible Approaches to Generate Watch Dog for Validation

1. Bounds for the latent space parameters based on
physical constraints.

Smart Watch Dog

= The encoder is implemented using state of the art Al to grasp the

context inform ation Of a trafﬁc scenario. 2. Physical model of the relation between the latent parameters.
_ _ _ 3. Evaluate the predicted trajectory by checking if the
= The decoder part is implemented model-based by using expert- vehicle will stay on the road and avoid collisions.

knowledge. Its output is the long-term trajectory prediction.

= Due to the decoder setup, the latent space z holds a specific and inter-

pretable meaning (e.g. acceleration).
= This method is called a Descriptive (Variational) Autoencoder, short

DVAE. Outlook
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1 + exp(—relu(zT)) In future work, the goal is to introduce more sophisticated motion cal-
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culations within the decoder part to improve prediction performance. A
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..... bl Corar] ‘\"‘l’““‘éo%“‘\v“ | % 38 — for all traffic situations anq not to be limited to highway-alike scenarios.
== ‘,&\: N;'ﬁl ‘Q‘.’.“: % | [ st™ f)ai{” . Current efforts are evaluating the usage of graph structures for the pre-
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= .@&Z{;&"%ﬂ; g both interpretabilty and performance can benefit from representations in
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Graph-based scenario representations
= Use graph structures and graph transformations to represent traffic

scenarios.[2]

= Apply novel methods like Graph Neural Networks to predict intentions
and gain interpretability.[3]
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