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Overview
•Validation of autonomous vehicles
•Statistical proof of being safer than a human would require billions of
driven km

• Identifying relevant/important scenarios can help reducing required val-
idation resources

•Using rule-based and intelligent trigger logic
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•Rule-based triggers
•Criticality, dynamics
•Driver vs. autonomous vehicle
•Fusion discrepancies, errors
•Categories(weather, light, . . . )

• Intelligent triggers
•Measure for relevance/novelty of
a scenario

•Clustering, dimensionality reduc-
tion, outlier detection

Results – How many kilometers?

•Statistical proof of being safer than a human [1]
•German traffic statistics [2]
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Hypothesis test, significance
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Hypothesis test, significance
corrected
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Hypothesis test, significance and power
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Hypothesis test, significance and power
corrected
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→Pure driving of required kilometers is infeasible

Results – Criticality and Dynamics Triggers

Criticality Trigger: TTC and THW based on trajectories

•THW

dego = rego + ||vego||t+ 0.5||aego||t2
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•TTC

dobj = robj + ||vobj||t+ 0.5||aobj||t2

dego = rego + ||vego||t+ 0.5||aego||t2
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Dynamic Trigger:
Acceleration

•Decoupled ax and ay
•Conditions and limits
• |ax| ≥ ax,lim, ax,lim = 0.6g [3]
• |ay| ≥ ay,lim, ay,lim = 0.7g [3]

Application: Both Triggers

Clustering Methods3. Unsupervised Image Feature Learning

SL CL AL WL PAM CLARA CLARANS FCMdd LFCMdd SC

0.05 s 0.04 s 0.03 s 0.02 s 0.23 s 0.07 s 0.06 s 0.21 s 0.14 s 0.35 s

0.11 s 0.08 s 0.06 s 0.06 s 0.65 s 0.14 s 0.13 s 0.66 s 0.34 s 0.52 s

Figure 3.1: Resulting clusters from the different methods: Single Linkage (SL),
Complete Linkage (CL), Average Linkage (AL), Weighted Linkage (WL), PAM,
CLARA (3 sample sets with size 5), CLARANS (nl,max = 3 and nn,max = 5), FCMdd
(ι = 2), LFCMDD (ι = 2 and p = 5) and Spectral Clustering (SC) (kKNN = 10 and
L). Inspired by http://scikit-learn.org/stable/auto_examples/cluster/
plot_cluster_comparison.html. Note: The clusters given here consist of 100
data points each. However, the computation times given are recorded with 1000
data points per cluster.

each method. Below the fifth row, the average computation time for the data sets
with 3 000 data points can be seen. For all methods the used dissimilarity measure
is the Euclidean distance in order to provide comparable results. It has to be noted
that the number of clusters K was selected not because of any heuristic but because
of the knowledge of the data. In the following, the results will be discussed briefly.

The hierarchical clustering methods result differ a lot according to the data sets
and the used linkage method. Single linkage performs well on chain like data sets
such as the two top most, whereas the other linkage methods yield less satisfactory
results. However, applied to the three data sets in the lower rows single linkage fails.
The other methods (CL to WL) yield slightly better results on the third and fifth
data set. The fourth data set is clustered well by all other hierarchical methods (CL
- WL). The overall comparison shows that the hierarchical clustering methods are
fast but might achieve unsatisfactory results.

In the fifth to seventh columns, the results are depicted when applying parti-
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Outlook
•Further rule-based triggers
•Dimensionality reduction
•Clustering techniques
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